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Design: Promoter Architecture

Figure 4. Promoter design incorporates genetic elements that mediate control of gene transcription: Promoter sequences,
including -35 and -10 boxes, recruit RNA polymerase to initiate gene transcription. Operator sequences, placed distal and
proximal relative to the promoter5, recruit repressor proteins to repress gene transcription. The genetic insulator riboJ ensures
standardized transcriptional output.1 The ribosome binding site (RBS) recruits ribosome to the mRNA transcript to initiate protein
translation. The hairpin structure enhances recruitment of the ribosome to the RBS.2
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Methodology: Synthesis Workflow

Figure 6. Synthesis workflow of multiple cloning site (mcs) A. Promoter cassette elements were synthesized by
touchdown (TD) PCR, assembly PCR (aPCR), and overlap extension (SOE) PCR. A similar workflow was used to
synthesize insert B, insert C, and insert D.
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Objective 1. Build promoter architectures that recruit repressors to
mediate binary gene expression outputs, and
Objective 2. Organize these promoter architectures into a genetic
circuit to establish XOR logic-gated gene expression.

IPTG

Fructose

Green Fluorescence Protein OutputXOR

Result: Circuit Components Synthesis

Figure 9. 2% (w/v) analytical agarose gel electrophoresis of the synthesized multiple cloning site (mcs) A, mcs B,
mcsC, and mcs D components including promoter (pro), riboJ, and repressor (R) sequence.
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Figure 3. The plasmid architecture (a) and genetic circuit design (b) will enable XOR logic-gated control of
mNeon protein (GFP) expression, producing binary output responses to IPTG and fructose. This could
serve as a platform for selecting designed variants when engineering systems of protein functions and
sequences.
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Figure 12. Diagram of XOR logic-gated production of
antibiotics with enantiospecific chemical commodities, D-
and L- amino acids.
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Genetic circuits with modular components designed
for logic-gated control of gene expression can
serve as a valuable platform for simultaneous
selection of a desired function. e.g. the biocatalysis
of enantiospecific chemical commodities like D- vs.
L- amino acids acids.
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Introduction

Problem: There is no protein engineering platform that mediates simultaneous selection of
multiple protein functions in a single experiment: Genetic circuits can serve as a protein
engineering platform that condenses multiple protein functions into a single gene expression event.

Figure 2. Genetic circuits are a system of transcription factors that function in concertation with genetic elements to control gene
transcription: The Lac operon is an example of a natural genetic circuit.3
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Figure 1. Engineering proteins that recognize or produce metabolites with enantiomeric specificity requires that protein variant
functions be screened using multiple rounds of the protein engineering workflow. For example, engineering a repressor that
selectively recognizes an L-amino acid requires screening the same candidate protein to ensure no interaction with the D-amino acid
enantiomer. This renders the conventional protein engineering workflow intractable and prone to failure.
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Methodology: Synthesis Protocols

Figure 7. PCR, gel extraction, and DNA cleanup protocol. A PCR product can be purified by gel extraction or clean up.

Figure 8. Transforming electrocompetent E. coli cells with plasmids subjected to ligation with the synthesized promoter cassettes.
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Figure 11. Positive control: Constitutive expression of GFP by introducing triple mutations in the DNA binding domains of the
repressors, which are no longer able to bind to the operator. Negative control: A mutation in mNeon protein that disrupts the
formation of a mature chromophore, rendering the protein incapable of fluorescence.

The next steps include:
1. Fixing assembly errors in mcsD promoter.
2. Characterization and quantification of XOR-logic gated control of GFP protein.
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Design: Repressor Architecture
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Figure 5. RA, RB, RC are repressor dimers that share the same architecture (a) except for residues in their DNA binding domain at
positions 17, 18, and 22. Four triple-mutations were introduced in RA’s and RB’s DBD to recognize distal and proximal operators at
multiple cloning site A (b). The triple-mutations were introduced to provide binary gene expression outputs that maximize transcript
count from gene expression events and minimize background expression during repression.4
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Result: Transformations
Table 1. Sanger sequencing results following the transformation
of E. coli cells with the synthesized pAD04 plasmids.

Figure 10. 2%(w/v) analytical agarose gel electrophoresis:
successful transformation of E. coli cells with pAD04 plasmids
containing the synthesized promoter (pro) and insert sequences.
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