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Figure 1. Engineering proteins that recognize or produce metabolites with enantiomeric specificity requires that protein variant
functions be screened using multiple rounds of the protein engineering workflow. For example, engineering a repressor that
selectively recognizes an L-amino acid requires screening the same candidate protein to ensure no interaction with the b-amino acid
enantiomer. This renders the protein workflow i and prone to failure

Problem: There is no protein engineering platform that mediates simultaneous selection of
multiple protein functions in a single experiment: Genetic circuits can serve as a protein
engineering platform that condenses multiple protein functions into a single gene expression event.
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Figure 2. Genetic circuits are a system of transcription factors that function in concertation with genetic elements to control gene
transcription: The Lac operon is an example of a natural genetic circuit.

Research Objectives
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Objective 1. Build promoter architectures that recruit repressors to
mediate binary gene expression outputs, and
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Objective 2. Organize these promoter architectures into a genetic
circuit to establish XOR logic-gated gene expression.
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Figure 3. The plasmid architecture (a) and genetic circuit design (b) will enable XOR logic-gated control of
mNeon protein (GFP) expression, producing binary output responses to IPTG and fructose. This could

serve as a platform for selecting designed variants when engineering systems of protein functions and
sequences.

Design: Promoter Architecture
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Figure 4. Promoter design incorporates genetic elements that mediate control of gene transcription: Promoter sequences,
including -35_and -10_boxes, recruit RNA polymerase to initiate gene transcription. Operator sequences, placed distal and
proximal relative to the promoters, recruit repressor proteins to repress gene transcription. The genetic insulator riboJ ensures
standardized transcriptional output." The ribosome binding site (RBS) recruits ribosome to the mRNA transcript to initiate protein
translation. The hairpin structure enhances recruitment of the ribosome to the RBS.2

Design: Repressor Architecture
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Figure 5. Ry, Rg, R are repressor dimers that share the same architecture (a) except for residues in their DNA binding domain at
positions 17, 18, and 22. Four triple-mutations were introduced in R,’'s and Rg’s DBD to recognize distal and proximal operators at
mutple cloning site A (b). The triple-mutations were inlroduced (o provide binary gene expression outputs that maximize transcript
count from gene expression events and minimize 9 fon during

Methodology: Synthesis Workflow
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Figure 6. Synthesis workflow of multiple cloning site (mcs) A. Promoter cassette elements were synthesized by

touchdown (TD) PCR, assembly PCR (aPCR), and overlap extension (SOE) PCR. A similar workflow was used to
synthesize insert B, insert C, and insert D.

Methodology: Synthesis Protocols
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Figure 7. PCR, gel extraction, and DNA cleanup protocol. A PCR product can be purified by gel extraction or clean up.
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Figure 8. Transforming electrocompetent E. coli cells with plasmids subjected to ligation with the synthesized promoter cassettes.
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Figure 9. 2% (w/v) analytical agarose gel electrophoresis of the syntheslzed multiple cloning site (mcs) A, mcs B,
mesC, and mes D components including promoter (pro), riboJ, and repressor (R) sequence.

Result Transformations
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1517- Table 1. Sanger sequencing results following the transformation
120 of E. coli cells with the synthesized pAD04 plasmids.
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Figure 10. 2%(w/v) analytical agarose gel electrophoresis:

successful transformation of E. coli cells with pADO4 plasmids
containing the synthesized promoter (pro) and insert sequences.

mcsE sequence verified  sequence verified

mesF sequence verified  sequence verified

Next Steps and Discussion
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Figure 11. Positive control: C of GFP by triple mutations in the DNA binding domains of the
repressors, which are no longer able to bind to the operator. Negative control: A mutation in mNeon protein that disrupts the
formation of a mature chromophore, rendering the protein incapable of fluorescence.

The next steps include:
1. Fixing assembly errors in mcsD promoter.
2. Characterization and quantification of XOR-logic gated control of GFP protein.

Conclusions

Genetic circuits with modular components designed
for logic-gated control of gene expression can 1
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